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1 Supplementary empirical results

1.1 Detailed nowcasting results of the bottom-up U-MIDAS
approach by COICOP-10 item

Table 1: Absolute RMSE of the U-MIDAS model for FMCG product-level inflation

Unprocessed food

Product COICOP ID day 7 day 14 day 21 day 28 Product COICOP ID day 7 day 14 day 21 day 28

Beef for boiling 0112101100 2.61 1.57 1.58 1.58 Citrus fruits 0116111000 3.92 2.63 2.57 2.58
Roulade or loin of beef 0112107100 2.33 1.80 1.80 1.79 Bananas 0116120100 2.54 2.03 2.02 2.00
Beef 0112107200 2.04 1.32 1.32 1.32 Apples 0116130200 3.54 2.19 2.12 2.09
Minced beef 0112107300 3.32 2.20 2.20 2.15 Pears 0116140100 4.16 3.02 3.02 2.99
Veal 0112109100 1.14 1.02 1.01 1.01 Grapes 0116165100 7.98 5.12 4.93 5.09
Smoked pork chop 0112200100 1.91 1.29 1.25 1.27 Kiwis. melons or the like 0116170000 3.53 2.57 2.56 2.55
Minced pork 0112200200 3.48 2.22 2.21 2.21 Butterhead Lettuce 0117111100 12.49 10.27 9.52 10.30
Roast pork 0112200300 2.30 1.58 1.57 1.57 Lambs lettuce 0117119000 7.09 4.87 4.87 4.88
Pork chop or cutlet 0112200500 2.42 1.75 1.75 1.71 Cauliflower or cabbage 0117121000 7.79 6.04 6.01 5.91
Lamb 0112300100 1.61 0.95 0.97 0.98 Tomatoes 0117131100 10.71 8.52 8.14 8.12
Fresh poultry 0112410100 2.36 1.41 1.40 1.41 Sweet peppers 0117133100 6.73 5.69 5.62 5.74
Frozen poultry 0112410200 2.66 1.66 1.65 1.66 Onion or garlic 0117141100 5.50 3.73 3.55 3.46
Rabbit or game meat 0112500100 1.25 0.91 0.92 0.89 Mushrooms 0117142100 1.76 1.45 1.47 1.46
Liver or other edible offal 0112600100 1.16 0.93 0.93 0.93 Carrots 0117145100 3.93 3.02 3.06 3.06
Eggs 0114701100 1.74 1.20 1.00 0.99 Aspargus or the like 0117149100 7.26 5.53 5.44 5.52

Processed food

Product COICOP ID day 7 day 14 day 21 day 28 Product COICOP ID day 7 day 14 day 21 day 28

Rice 0111101100 1.42 0.98 1.00 1.00 Frozen vegetables 0117209100 1.36 0.87 0.87 0.88
Flour 0111201100 3.72 2.31 2.34 2.31 Dried vegetables 0117310200 1.17 0.72 0.73 0.72
Semolina 0111203100 2.79 1.60 1.58 1.60 Tinned gherkins 0117321100 1.69 1.04 1.03 1.03
White bread 0111311100 1.06 0.68 0.68 0.68 Tinned sauerkraut 0117323100 1.87 1.43 1.39 1.41
Rye bread or brown bread 0111312100 0.92 0.57 0.57 0.57 Tinned mushrooms 0117324100 1.25 0.77 0.79 0.79
Granary bread 0111313200 1.24 0.77 0.78 0.78 Tinned peas 0117325100 1.63 0.94 0.92 0.92
Ready to bake rolls 0111320200 1.31 0.77 0.78 0.78 Asparagus 0117328400 3.21 2.20 2.25 2.23
Fresh bread rolls 0111320300 1.58 1.02 1.01 0.99 Potatoes 0117401300 5.24 3.91 3.73 3.67
Sponge flan case 0111421100 1.25 0.74 0.74 0.73 Frozen chips or the like 0117402100 1.88 1.55 1.51 1.48
Frozen cake. tart or pie 0111423100 1.37 0.93 0.93 0.94 Potato crisps 0117500200 2.11 1.47 1.48 1.48
Fresh cake. tart or pie 0111424300 1.16 0.69 0.69 0.69 Sugar 0118100100 4.91 4.38 4.16 4.17
Biscuits 0111431200 1.88 1.51 1.51 1.52 Marmalade. jam or jelly 0118201100 1.91 1.60 1.59 1.60
Muffins or waffles 0111433100 1.51 0.86 0.85 0.85 Honey 0118203100 1.44 0.93 0.90 0.91
Crisp bread 0111442100 2.13 1.34 1.33 1.38 Cocoa based spread 0118205100 1.30 1.29 1.27 1.27
Toasted bread 0111444200 1.55 1.17 1.17 1.17 Slab of chocolate 0118301100 2.31 2.11 2.09 2.09
Rusk 0111446100 2.38 1.34 1.36 1.35 Chocolate 0118309100 1.48 1.17 1.17 1.17
Savoury biscuits 0111450100 2.05 1.70 1.70 1.67 Filled chocolates 0118401100 0.78 0.66 0.66 0.66
Pizza or quiches 0111500100 2.13 1.49 1.49 1.49 Boiled sweets 0118405100 0.83 0.66 0.67 0.67
Pasta 0111610100 2.18 1.34 1.34 1.38 Ice cream 0118500100 1.47 1.23 1.21 1.22
Pasta preparations 0111621200 2.51 1.94 1.93 1.93 Sweetener 0118601100 3.66 1.82 1.74 1.76
Oatflakes 0111701100 2.16 1.42 1.41 1.42 Vinegar 0119101100 1.43 0.89 0.89 0.89
Cornflakes and muesli 0111703100 0.98 0.81 0.82 0.81 Mustard 0119102100 2.05 1.19 1.18 1.18
Cake mix 0111801100 1.73 1.11 1.11 1.11 Ketchup 0119103200 2.95 1.70 1.68 1.69
Salami or sausage 0112710200 1.22 0.81 0.80 0.80 Sauce mix 0119103300 1.84 1.56 1.52 1.51
Ham or bacon 0112710300 1.09 0.74 0.75 0.75 Mayonnaise 0119104100 1.96 1.11 1.12 1.11
Lyoner pork sausage 0112721100 2.09 1.48 1.45 1.46 Salt 0119201100 2.56 1.57 1.57 1.57
Fried sausage 0112721200 1.67 1.17 1.14 1.13 Spices 0119203100 0.79 0.50 0.51 0.51
Cold meat 0112721300 2.02 1.46 1.46 1.47 Powdered infant milk 0119302100 0.82 0.52 0.53 0.53
Liver sausage 0112722100 1.42 1.01 1.00 1.01 Food for infants 0119303100 1.18 0.70 0.72 0.72
Tinned sausage 0112723100 1.57 0.91 0.91 0.91 Meat ready meal 0119406100 0.93 0.78 0.78 0.78
Meat based speciality salad 0112801100 1.61 0.92 0.92 0.92 Instant soup 0119911100 1.94 1.50 1.49 1.48
Frozen meat 0112805100 1.69 1.08 1.09 1.09 Tinned soup 0119913100 2.04 1.55 1.55 1.54
Meat-based ready meal 0112807200 1.14 0.73 0.73 0.72 Baking powder 0119930100 3.22 1.71 1.73 1.72
Prepared minced meat 0112808200 2.30 1.54 1.51 1.50 Blancmange powder 0119940100 1.89 1.14 1.12 1.14
Smoked fish 0113500100 1.82 1.24 1.21 1.21 Vitamin tablets or the like 0119990200 0.88 0.62 0.62 0.62
Tinned fish 0113601200 1.25 0.93 0.93 0.91 Pure coffee 0121110300 1.95 1.60 1.56 1.56
Fish marinade 0113602100 1.35 0.82 0.84 0.84 Instant coffee 0121121100 1.40 1.16 1.11 1.11
Fish fingers 0113603000 2.14 1.33 1.29 1.34 Black tea or green tea 0121201100 0.52 0.41 0.41 0.41
Whole milk 0114110100 1.75 1.20 1.15 1.16 Fruit tea or herbal tea 0121203100 0.94 0.79 0.79 0.79
Low fat milk 0114210100 2.02 1.31 1.30 1.31 Cocoa powder 0121300100 1.18 0.87 0.87 0.87
Condensed milk 0114300100 1.45 1.04 1.03 1.03 Sparkling mineral water 0122100100 1.22 0.89 0.88 0.88
Yoghurt 0114400200 1.91 1.45 1.54 1.54 Still mineral water 0122100200 1.18 0.93 0.92 0.92
Hard cheese 0114501100 2.22 1.38 1.39 1.36 Cola drink 0122211100 1.58 1.32 1.34 1.34
Sliced cheese 0114502100 2.35 1.73 1.72 1.73 Soft drink 0122219100 1.76 1.26 1.27 1.27
Soft cheese 0114503100 1.14 0.90 0.89 0.88 Apple juice 0122311100 1.73 1.35 1.28 1.25
Curd 0114507100 4.09 2.96 2.89 2.84 Orange juice 0122312200 1.46 1.03 1.03 1.04
Cream 0114601100 2.79 1.91 1.89 1.90 Multi vitamin juice 0122315100 1.25 0.97 0.96 0.97
Milk based dessert 0114604100 2.20 1.67 1.65 1.66 Vegetable juice 0122320300 1.40 0.79 0.80 0.82
Butter 0115100100 3.68 2.58 2.36 2.37 Liqueur 0211110100 0.59 0.45 0.44 0.45
Margarine 0115201100 2.65 2.14 2.07 2.05 Whisky 0211120100 0.75 0.60 0.60 0.59
Vegetable fat 0115209100 2.54 1.67 1.63 1.63 Brandy or cognac 0211130100 0.64 0.54 0.52 0.51
Sunflower oil 0115400100 6.72 3.26 3.18 3.25 Other spirits 0211140100 0.53 0.42 0.41 0.40
Dried fruit 0116301100 1.68 1.03 1.03 1.03 Red wine or rose wine 0212110200 0.75 0.52 0.52 0.52
Peanuts or trail mix 0116303100 0.95 0.82 0.81 0.81 White wine 0212120100 0.64 0.41 0.41 0.41
Apple sauce 0116401100 2.16 1.35 1.31 1.31 Sparkling wine 0212140100 1.29 1.02 1.03 1.03
Sour cherries 0116402100 2.15 1.81 1.78 1.75 Pils. dark or lager beer 0213100100 1.45 1.14 1.14 1.14
Tinned pineapple 0116403100 2.11 1.45 1.42 1.44 Wheat beer or Altbier 0213200100 1.03 0.87 0.87 0.87
Frozen spinach 0117201100 1.70 1.22 1.22 1.21 Non-alcoholic beer 0213300100 1.23 0.95 0.95 0.95



NEIG

Product COICOP ID day 7 day 14 day 21 day 28 Product COICOP ID day 7 day 14 day 21 day 28

Baby bottle or the like 0540326100 1.39 0.98 0.98 0.99 Hair spray or gel 1213212100 2.65 1.67 1.66 1.68
Heavy duty detergent 0561101100 1.37 0.91 0.91 0.91 Toothpaste 1213213100 1.36 0.85 0.85 0.85
Mild detergent 0561101200 1.84 1.17 1.17 1.17 Mouthwash or dental floss 1213214100 1.26 0.79 0.79 0.80
Fabric softener or starch 0561101300 1.91 1.17 1.17 1.17 Shaving foam 1213215100 1.07 0.75 0.75 0.75
Dishwashing detergent 0561103100 1.63 1.01 1.00 1.01 Toilet soap 1213216100 2.29 1.44 1.44 1.45
Sanitary cleaner 0561105100 1.39 0.84 0.85 0.85 Shower gel or foam 1213217100 1.50 1.06 1.07 1.07
Glass or furniture cleaner 0561105200 0.84 0.52 0.52 0.52 Toilet tissue 1213221100 1.72 0.98 0.98 0.98
All purpose cleaners 0561105300 1.56 0.97 0.97 0.97 Paper handkerchiefs 1213222100 1.75 0.95 0.94 0.95
Shoe polish 0561107100 1.74 1.10 1.09 1.10 Nappies for babies 1213223200 1.15 0.73 0.73 0.73
Filter paper 0561211100 1.04 0.64 0.63 0.64 Tampons or facial tissues 1213229100 1.67 1.03 1.03 1.03
Aluminium foil 0561211200 2.05 1.06 1.04 1.04 Perfume 1213231100 1.22 1.06 1.05 1.06
Candles 0561241100 1.73 1.16 1.16 1.15 Lipstick or lip care 1213232100 1.21 1.14 1.15 1.14
Scrubbing brushes or brooms 0561291000 0.71 0.47 0.47 0.47 Nail varnish 1213232200 1.14 1.00 0.99 0.99
Melissengeist tonic 0611032100 0.56 0.41 0.42 0.42 Make up 1213232300 1.31 1.18 1.18 1.19
Bird food 0934201200 1.24 0.81 0.81 0.81 Kajal pencil or mascara 1213232400 1.33 1.27 1.31 1.31
Dog food or cat food 0934201400 1.32 0.84 0.85 0.86 Hand cream 1213233100 1.16 0.93 0.93 0.93
Cat litter or bird sand 0934209100 1.10 0.67 0.68 0.68 Day cream or night cream 1213233200 0.95 0.82 0.82 0.82
Non electric toothbrush 1213105200 1.11 0.76 0.76 0.76 Baby cream 1213233300 1.23 0.77 0.77 0.78
Razor blades 1213105300 1.12 0.81 0.81 0.81 Deo spray or deo roll on 1213240100 1.57 1.20 1.18 1.17
Hair shampoo 1213211100 1.56 1.20 1.25 1.21

Sources: GfK household panel; own calculations.
Notes: The table reports the absolute RMSE values for the U-MIDAS model at nowcasting days 7,
14, 21 and 28 for all COICOP-10 items covered by the GFK:FMCG dataset.
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1.2 Nowcasting results of a bottom-up OLS approach

The most basic approach to nowcasting inflation bottom-up with the help of weekly
scanner-based indicators avoids mixed frequencies and uses OLS. This bottom-up
OLS approach aggregates the weekly indicators to the monthly frequency after filling
missing weeks with the last available observation. Then it estimates the following
regression by OLS for each COICOP-10 item c that is matched by a weekly indicator:

πc,t = αc + βcxc,t +
13∑
i=s

γc,s ds,t + εc,t. (1)

The bottom-up aggregation to product groups and headline inflation use the official
HICP aggregation weights and thus work exactly as in the bottom-up U-MIDAS
approach.

Table 2 shows the RMSE of the bottom-up OLS approach approach relative to the
SD-AR benchmark for a selection of COICOP-10 items. Similar to the U-MIDAS
approach, the benchmark is partly outperformed by a large margin. A comparison
of these results with those of the U-MIDAS approach presented in the main body
of our paper does not see a clear winner. For items that are already predicted
exceptionally well using U-MIDAS, the OLS approach typically reduces the nowcast
loss even further. This particularly applies to most items within the subgroups of
unprocessed fruit and vegetables and dairy products and fat. By contrast, whenever
the U-MIDAS approach yields only moderate to good improvements over the SD-
AR benchmark, the OLS approach is mostly unable to further increase the nowcast
precision.

Table 3 shows the nowcast results for the main six product groups and headline
inflation, again in comparison to the bottom-up SD-AR benchmark. Similar to the
bottom-up U-MIDAS approach, the bottom-up OLS approach improves strongly over
the benchmark for the product groups of unprocessed food, processed food, and
energy, for which a multitude of highly informative weekly data are available, while
it is roughly on par with the benchmark for the product groups of package holidays,
NEIG and services. Taken together, this yields headline nowcasts considerably more
precise than those produces by the benchmark. A comparison with the bottom-up
U-MIDAS approach indicates that the bottom-up OLS approach is slightly superior
but the difference is small and statistically not significant.

Our takeaway from this comparison is that, while econometric methods matter to
some extent, the major cause for large nowcast gains over the benchmark is rather
the inclusion of the highly informative GFK:FMCG data.
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Table 2: RMSE for FMCG product-level inflation: bottom-up OLS approach relative
to the SD-AR benchmark

Sources: GfK household panel; own calculations.
Notes: The figure shows heatmaps of RMSE values for the bottom-up OLS approach relative to
the SD-AR benchmark at nowcasting days 7, 14, 21 and 28 for the best-performing COICOP-10
items within selected FMCG product groups. Results for the Diebold and Mariano (1995) test
in the event of outperformance relative to the SD-AR model are indicated by the symbols ∗ (5%
level) and ∗∗ (1% level).
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Table 3: RMSE of headline inflation and its components: bottom-up OLS approach
relative to the benchmark approach

Sources: GfK household panel; European Commission’s Weekly Oil Bulletin; AMADEUS; own
calculations.
Note: The figure shows heatmaps of RMSEs for nowcasts based on the bottom-up OLS approach
with aggregation via HICP weights relative to the benchmark approach, which is a bottom-up
nowcast based on SD-AR models fitted at the COICOP-10 level. Results for the Diebold and
Mariano (1995) test in the event of outperformance relative to the benchmark are indicated by the
symbols ∗ (5% level) and ∗∗ (1% level).

2 A horserace of various machine learning approaches

to nowcast product-group inflation

2.1 The econometric models

A natural starting point for nowcasting inflation rates at the product-group level is
to treat all weekly indicators belonging to a product group as relevant predictors
only for this group. As the U-MIDAS setting is not suited to handling such a large
set of predictors, we resort to machine learning methods.

We try two modeling approaches. Our first approach avoids mixed frequencies by first
aggregating the weekly GFK:FMCG series to the monthly frequency and then apply-
ing standard shrinkage methods to estimate nowcasting models for the group-specific
target.1 Specifically, we use the LASSO, the ridge, and the elastic net estimators.2

From a mathematical standpoint, let us assume a set of monthly aggregated predic-
tors xt = (x1t, . . . , xqt)

′ such that x = (x1, . . . ,xt)
′, where q denotes an abundant

number of COICOP-10 series underlying a given group-specific target. Hence, con-
ditional on official inflation data available at t, we model our group-specific target
πM = (πM

g,1, . . . , π
M
g,t)

′ as a function of X = (ι,x) using standard shrinkage methods
such as LASSO, ridge and elastic net regression, where ι is a t-dimensional vector of

1Applying penalized U-MIDAS regressions to the large set of predictors defined at the weekly
frequency (four weekly series for each predictor) is also feasible; however, this approach does not
recognize serial dependence across high-frequency lags and thereby may be subject to random
selection. Zhao and Yu (2006) show that LASSO selects the true model consistently if and (almost)
only if the irrelevant covariates are not highly correlated with the predictors in the true model
(“irrepresentable condition”).

2We use the elastic net without tuning the relative weights of the L1 and L2 norms. Instead, we
impose equal weights.
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ones. The hybrid elastic net estimator solves the following penalized least squares
problem:

β̂ = min
β̂

||πM −Xβ||2 + λ

(
α |β|1 +

(1− α)

2
||β||2

)
, (2)

where α ∈ (0, 1] is a weight parameter that interpolates between LASSO (α = 1) and
ridge regression (as α → 0) while the regularization parameter λ controls the amount
of shrinkage in β. Hence, the idea is to shrink coefficient estimates β̂ to or towards
zero if the c-th COICOP-10 series is not relevant. Finally, we construct the monthly
aggregated estimate of x using the latest contemporaneous weekly GFK:FMCG in-
formation and compute the nowcast for πM

g,t+1 based on the estimates β̂.

The second approach constructs a nowcast using the sg-LASSO-MIDAS framework
(see Babii, Ghysels, and Striaukas, 2022) that handles high-dimensional mixed-frequency
prediction problems. Let the matrix of covariates now be defined as:

X = (ι,X
(m)
1 W, . . . ,X(m)

q W ), (3)

where X
(m)
j = (X

(m)
c1 , . . . , X

(m)
ct )′ is a t×m matrix of the c-th high-frequency covariate

(weekly GFK:FMCG series) and W denotes a predetermined m×L matrix of weights
based on Legendre polynomials of degree L that aggregate over the high-frequency
lags. Then, the sg-LASSO estimator solves the penalized least squares problem:

β̂ = min
β̂

||πM −Xβ||2 + 2λ (α |β|1 + (1− α) ||β||2,1) , (4)

where ||β||2,1 =
∑

G∈G |βG|2 is the group LASSO norm for a group structure G that
hereby constitutes all high-frequency lags of a single covariate. Thus, in this case, α ∈
[0, 1] determines the relative importance of LASSO sparsity and the group structure.

Note that sg-LASSO has the advantage of performing shrinkage in a mixed-frequency
rather than a low-frequency setting by recognizing serial dependence across differ-
ent high-frequency lags, also taking into account the time series nature of the data.
Hence, model (4) promotes sparsity between and within COICOP-10 items, allowing
us not only to select the relevant COICOP-10 series but also the appropriate lag
structure of each item. We use a Legendre polynomial of degree L = 0 which at-
tributes equal weights to all high-frequency lags and delivers similar results compared
to other choices of L but at a lower computational cost (see Appendix ??).

The tuning parameters of the above machine learning approaches are determined in a
data-driven manner using cross-validation to obtain optimal prediction performance.
We tune the hyperparameters of sg-LASSO via expanding cross-validation splitting
the in-sample data into k = 5 folds and tests on the k + 1th fold so that it accounts
for the time series nature of the data, although it only uses the end of the sample
as the test set. Cross-validation of the standard shrinkage methods (LASSO, ridge
and elastic net) also uses a training split of k = 5 folds but hereby assumes indepen-
dent and identically distributed samples, which is also valid in a time series context
provided the models yield uncorrelated errors (Bergmeir, Hyndman, and Koo, 2018).
Finally, to evaluate the nowcast precision of these machine learning approaches based
on weekly GFK:FMCG information, we fit SD-AR benchmark models directly to the
group-specific target πM

g,t.
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2.2 Empirical results

This section presents the results of the nowcasting exercise described in Appendix
2. We use machine learning shrinkage methods to estimate direct nowcasting models
for high-level product groups (and some subgroups) that are matched by weekly
GFK:FMCG price indicators at the COICOP-10 level. Table 4 compares the RMSE
of these models relative to the SD-AR benchmark fitted to the group-specific inflation
rates.

The top panel refers to the three high-level product groups. With regard to unpro-
cessed and processed food, the shrinkage models significantly outperform the bench-
mark with reductions in the RMSE between 15% and 25% on all nowcasting days.
By contrast, for NEIG the benchmark dominates. This outcome likely reflects the
different coverage rates of the GFK:FMCG data across product groups, whereas 30
out of 38 COICOP-10 items of unprocessed food and 116 out of 142 COICOP-10
items of processed food are matched, but only 39 out of the 302 NEIG with semi-
durables and durables almost lacking completely. In addition, even the relatively few
matched NEIG items, mostly non-durables, do not correlate very strongly with their
HICP counterparts.

Table 4: RMSE for FMCG product-group inflation: Shrinkage methods relative to
the SD-AR benchmark

(a) High-level product groups

(b) Subgroups

Sources: GfK household panel; own calculations.
Notes: The figure shows heatmaps of RMSEs for nowcasts based on shrinkage machine learn-
ing methods relative to the SD-AR benchmark for product groups (and subgroups) matched by
GFK:FMCG data. Results for the Diebold and Mariano (1995) test in the event of outperformance
relative to the benchmark are indicated by the symbols ∗ (5% level) and ∗∗ (1% level).
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The bottom panel in Table 4 shows the results for the eight more disaggregated
subgroups. In the large majority of cases, it pays off considerably to use shrinkage
models that include weekly GFK:FMCG data. The advantage is particularly large
for dairy products and fat (reduction in RMSE of roughly 45% to 55%), unprocessed
fruit and vegetables (reduction of around 20% to almost 40%), processed meat and
fish (reduction of more than 25% to almost 40%), and unprocessed meat, fish and
eggs (reduction of nearly 20% to 25%). For processed fruit and vegetables, bread and
cereals, and beverages and others, the nowcasting gains are more muted, but it is still
generally beneficial to use shrinkage models. Only in the case of non-durables, there
is no clear difference to the benchmark, which likely again reflects the low correlation
of the GFK:FMCG items at the COICOP-10 level with their HICP counterparts.

The weekly flow of information affects the nowcasting performance in a way very
similar to what is reported at the COICOP-10 level. Most importantly, the infor-
mation available on day 7 of a given month already turns out to be highly valuable.
This likely reflects the fact that at day 7 of a month t, the benchmark model in-
cludes only official inflation rates of month t − 2, while the shrinkage approaches
use the full GFK:FMCG data of month t − 1 and the first week of month t. The
additional information exploited at day 14 typically further improves the nowcasts in
absolute terms, whereas this is not always the case relative to the benchmark, which
on that day includes the official inflation rates of month t−1. Finally, the additional
information gained in weeks 3 and 4 of a month is of minor qualitative importance.

Concerning the different shrinkage approaches, the nowcasting results do not favor a
single method. The general conclusion is that it is important to include the weekly
GFK:FMCG dataset and make it usable in an appropriate way. To this end, stan-
dard shrinkage methods (LASSO, ridge and elastic net) work generally as well as the
sg-LASSO approach, which performs variable selection in a mixed-frequency setting
and fully accounts for the time series nature of the dataset. Nevertheless, for pro-
cessed food, which is the product group with by far the largest number of underlying
COICOP-10 items that we match with GFK:FMCG data, the sg-LASSO is clearly
superior. This may indicate that this approach is especially promising when it comes
to very high-dimensional estimation and nowcasting settings.

2.3 Robustness

We examine whether the product group-specific nowcasting results hold irrespec-
tive of our hyperparameter choices for the estimation of shrinkage methods. We
start by increasing the degree of the sg-LASSO Legendre polynomial from L = 0 to
L = {1, 2}. Our findings suggest a slight improvement in the precision of the now-
cast in only a small number of cases where statistically significant outperformance
is already achieved by sg-LASSO with L = 0 compared to SD-AR. Hence, it rep-
resents the optimal choice given that it promotes a higher dimensionality reduction
and carries a smaller computational burden when estimating sg-LASSO coefficients.
Similarly, we test for different folds of the cross-validation considering the grid set
k ∈ {5, 10, 15, 20, 25}. Overall, these choices favor similar tuning parameters and
model architectures, thus not altering the results for group-specific targets.
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3 Model simulation: Detailed model solution

3.1 Model setup

For our simulation exercise, we employ a standard New-Keynesian model closely
following Gaĺı (2015). The demand side is given by the IS equation:

xt = − 1

σ
(it − Et {πt+1} − r∗) + Et {xt+1}+ gt, (5)

where it denotes the nominal interest rate, xt denotes the output gap in period t and
πt represents period t′s inflation rate. r∗ corresponds to the deterministic steady-
state level of the natural interest rate, given by r∗ = 1

β
− 1 with β denoting the

subjective discount factor. gt is a demand shock. The expression Et {•} is used to
denote the (rational) expectation of a variable given the information available to the
policymaker and the public in period t. 1

σ
denotes the intertemporal elasticity of

substitution.

The supply side of the economy is represented by the following forward-looking
Phillips curve:

πt = κxt + βEt {πt+1}+ ut. (6)

ut represents a cost-push shock. The slope of the Phillips curve, κ, is given by:

κ = λ

(
σ (1− α) + φ+ α

1− α

)
(7)

with λ = (1−βθ)(1−θ)
θ

∗ Θ and Θ = 1−α
1−α+αε

. 1 − α denotes the elasticity of output

with respect to labor, 1
φ
represents the Frisch elasticity of labor supply, θ denotes the

share of firms not adjusting prices in a given period and ε represents the elasticity of
substitution between varieties.

The demand and cost-push shocks are modeled as AR(1) processes, as follows:

gt = ρggt−1 + ηgt (8)

ut = ρuut−1 + ηut , (9)

with 0 < ρg, ρu < 1 and ηgt ∼ i.i.d. N
(
0, σ2

ηg

)
and ηut ∼ i.i.d. N

(
0, σ2

ηu

)
.

Assuming discretion, the policymaker minimizes the following loss function:

Lt =
1

2

(
π2
t + δx2

t

)
, (10)

where δ represents the relative weight that the policymaker places on output sta-
bilization versus inflation stabilization. We assume that the inflation target of the
policymaker, π∗, is set equal to zero.

9



3.2 Model solution under full information

In the case of full information, the true sizes of the demand and cost-push shocks are
known to the policymaker and the public, i.e., we have

gt = Et {gt} and ut = Et {ut} . (11)

The policymaker’s objective is to maximize the loss function

min
it

1

2
Et

[
π2
t + δx2

t

]
(12)

s.t. the IS curve (5) and the Phillips curve (6).

The associated Lagrange function is given by:

L = Et

{
1

2

[
π2
t + δx2

t

]
+ (13)

+µt

[
− 1

σ
(it − Et {πt+1} − r∗) + Et {xt+1}+ gt − xt

]
+

+ νt [κxt + βEt {πt+1}+ ut − πt]} .

The first-order equations can be derived as follows:

• With respect to xt:
δxt − νt + νtκ = 0 (14)

• With respect to πt:
πt − νt = 0 (15)

• With respect to it:

−νt
1

σ
= 0 (16)

• With respect to νt:

xt = − 1

σ
(it − Et {πt+1} − r∗) + Et {xt+1}+ gt (17)

• With respect to νt:
πt = κxt + βEt {πt+1}+ ut (18)

From (16), we see that
νt = 0. (19)

Plugging (15) into (14), using νt = 0 and rearranging, we obtain:

xt = −κ

δ
πt. (20)
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Plugging this result into equation (18) and collecting terms gives:

πt =
δβ

δ + κ2
Et {πt+1}+

δ

δ + κ2
ut. (21)

Solving this equation forward (and assuming that lim
i→∞

(
δβ

δ+κ2

)i
Et {πt+i+1} = 0), we

obtain for the inflation rate in the case of full information:

πfull inf
t =

δ

κ2 + δ(1− βρu)
ut = δqut (22)

with

q ≡ 1

κ2 + δ(1− βρu)
. (23)

Plugging this result into equation (20), gives the following solution for the output
gap under full information:

xfull inf
t = − κ

κ2 + δ(1− βρu)
ut = −κqut. (24)

Then:
Et

{
πfull inf
t+1

}
= δqEt {ut+1} = δqρuut. (25)

and
Et

{
xfull inf
t+1

}
= −κqEt {ut+1} = −κqρuut. (26)

Using the IS equation, the interest rate that the policymaker will chose under full
information, given by ifull inft , can be derived as follows:

ifull inft = Et {πt+1}+ r∗ + σ (−xt + Et {xt+1}+ gt) =

= δqρuut + r∗ + σ (κqut − κqρuut) + σgt =

= δqρuut + r∗ + σκ (1− ρu) qut + σgt =

= r∗ +

(
1 +

σκ(1− ρ)

δρu

)
δqρuut + σgt =

= r∗ + γπδqρuut + σgt

with

γπ = 1 +
σκ(1− ρu)

δρu
. (27)

If δ = 0 (case of strict inflation targeting), this expression can be rewritten as:

ifull inft = r∗ +

(
σ (1− ρu)

κ

)
ut + σgt, (28)
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given that

γπδqρuut + σgt =(
1 +

κσ(1− ρu)

δρu

)(
1

κ2 + δ(1− βρ)

)
δρuut + σgt =(

δ +
κσ(1− ρu)

ρu

)(
1

κ2 + δ(1− βρu)

)
ρuut + σgt =

δ=0(
κσ(1− ρu)

ρu

)(
1

κ2

)
ρuut + σgt =(

σ (1− ρu)

κ

)
ut + σgt.

If δ > 0 (case of flexible inflation targeting), the expression for the optimal interest
rate under full information can be also written as:

ifull inft = r∗ + γπδqρuut + σgt = r∗ + γπρuπt + σgt = r∗ + γπEt {πt+1}+ σgt. (29)

3.3 Model solution under incomplete information

Modeling demand and cost-push shock uncertainty

We assume that the policymaker cannot observe demand and cost-push shocks with
any certainty and needs to rely on estimates. We use the expectation operator Et

to refer to the policymaker’s estimates or perceptions of such unobservable variables.
Thus, Et {gt} corresponds to the policymaker’s estimate of the demand shock in
period t, given the information available at that point in time and Et {ut} refers to
the corresponding estimate of the cost-push shock in period t. We assume that these
perceptions represent the best available estimates of the unobservable variables from
the perspective of the policymaker. Similarly, we use Et to denote the best available
estimate or forecast of output and inflation. For example, Et {πt} represents the
policymaker’s best forecast of inflation at the point in period t when it decides on its
policy, i.e., before it can observe the joint consequences of demand, cost-push and its
policy choice on inflation.

Fortunately, the optimal policy under uncertainty can be determined in a straight-
forward manner, given that our model framework fulfills the following conditions:
the model is linear, the parameters are known and uncertainty is additive. In this
case, certainty-equivalence applies, i.e., the optimal policy must satisfy the decision
maker’s first-order conditions, equations (14) to (18), in expectation (see, for exam-
ple, Svensson and Woodford, 2003).

Formally, we model perceived shocks, Et {gt} and Et {ut} as follows (see Beck and
Wieland, 2008):

gt = Et {gt}+ εgt , with εgt ∼ i.i.d. N
(
0, σε2g

)
(30)

ut = Et {ut}+ εut , with εut ∼ i.i.d. N
(
0, σε2u

)
. (31)
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εgt and εut denote the nowcast error of the policymaker with respect to the size of
the demand and cost-push shock in period t, respectively. σε2g

and σε2u
determine the

degree of uncertainty of the demand and cost-push shock nowcasts.

Model solution

Since certainty-equivalence applies, we can replace the true shock values in the deci-
sion maker’s first-order conditions by their perceived values and solve for the realized
values of the choice variables following the steps outlined above (Section 3.2) in an
analogous manner. For the optimal interest rate under incomplete information, we
then obtain:

iincomplete inf
t = r∗ + γπκqρuEt {ut}+ σEt {gt} = (32)

= r∗ + γπEt {πt}+ σEt {gt}

with γπ given by equation (27).

Alternatively, the optimal interest rate chosen under incomplete information can also
be expressed as:

iincomplete inf
t = r∗ + γπδqρuEt {ut}+ σEt {gt} = (33)

= r∗ + γπδqρu (ut − εut ) + σ (gt − εgt ) =

= r∗ + γπδqρuut + σgt − γπδqρuε
u
t − σεgt =

= ifull inft − γπδqρuε
u
t − σεgt .

The intended values for the output gap is given by:

Et {xt} = − κ

κ2 + δ(1− βρ)
Et {ut} = −κqEt {ut} . (34)

Plugging the interest rate chosen under uncertainty into the IS curve, the actual
value for the output gap can be derived as follows:

xincomplete inf
t = − 1

σ

(
iincomplete inf
t − Et {πt+1} − r∗

)
+ Et {xt+1}+ gt

= − 1

σ

(
ifull inft − γπδqρuε

u
t − σεgt − δqρuEt {ut} − r∗

)
− κqρuEt {ut}+ gt

= − 1

σ

ifull inft − δqρuut︸ ︷︷ ︸
=Et{πfull inf

t+1 }

−r∗

 −κqρuut︸ ︷︷ ︸
=Et{xfull inf

t+1 }

+gt −
1

σ
(−γπδqρuε

u
t − σεgt + δqρuε

u
t ) + κqρuε

u
t

= xfull inf
t +

(
1

σ
γπδqρu −

1

σ
δqρu + κqρu

)
εut + εgt

= xfull inf
t + κqεut + εgt ,

where we used that Et

{
πfull inf
t+1

}
= δqρuEt {ut} and Et

{
xfull inf
t+1

}
= −κqρuEt {ut}
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(see equations (26) and (25)) and the fact that

1

σ
γπδqρu −

1

σ
δqρu + κqρu = q

[
1

σ
δρu (γπ − 1) + κρu

]
= q

[
1

σ
δρu

(
1 +

κσ(1− ρu)

δρu
− 1

)
+ κρu

]
= q

[
1

σ
δρu

(
κσ(1− ρu)

δρu

)
+ κρu

]
= κq.

The latter expression can also be written as:

xincomplete inf
t = xfull inf

t + κqεut + εgt = (35)

= −κqut + κqεut + εgt =

= −κqEt {ut}+ εgt . (36)

The intended value for inflation is given by:

Et {πt} =
δ

κ2 + δ(1− βρ)
Et {ut} = δqEt {ut} (37)

Plugging the expression obtained for actual output under incomplete information into
the Phillips curve, the actual value for the inflation rate under incomplete information
can be derived as follows:

πincomplete inf
t = κxincomplete inf

t + βEt {πt+1}+ ut =

= κ [−κqEt {ut}+ εgt ] + βδqρuEt {ut}+ ut =

=
[
−κ2 + βδρ

]
qEt {ut}+ ut + κεgt =

=
[
−κ2 + βδρ

]
qEt {ut}+

[
κ2 + δ − βδρ)

]
qut + κεgt =

= δqut +
[
κ2 − βδρ

]
q [ut − Et {ut}] + κεgt =

= δq [Et {ut}+ εut ] +
[
κ2 − βδρ

]
q [ut − Et {ut}] + κεgt =

= δqEt {ut}+
[
κ2 − βδρ

]
q [ut − Et {ut}] + δqεut + κεgt =

= δqEt {ut}+ q
[
κ2 − βδρu + δ

]
εut + κεgt =

= Et {πt}+ εut + κεgt . (38)

Alternatively, the following expression can be derived:

πincomplete inf
t = δqEt {ut}+ εut + κεgt = (39)

= δqut − δqεut + εut + κεgt =

= πfull inf
t + (1− δq) εut + κεgt .
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4 Model simulation: Supplementary simulation re-

sults

On the following pages, supplementary simulation outcomes are presented. Specifi-
cally, the following results are presented:

a) Table 5 Variances of inflation and the output gap: Low weight on the
output gap (δ = 0.02

3
), all nowcast scenarios: Variances of inflation and the

output gap obtained for the case of the calibration using default values and a low
weight for output stabilization in the loss function employing the forecast results
for all model specifications used in the empirical part (SD AR forecast, bottom-
up OLS-match, bottom-up U-MIDAS, direct ML). These results supplement
numbers reported in Table E5 of the main paper which only focuses on outcomes
obtained for the SD AR forecast and Bottom-up U-MIDAS models.

b) Table 6 Variances of inflation and the output gap: High weight on
the output gap (δ = 0.25

3
), all nowcast scenarios: Variances of inflation

and the output gap obtained for the case of the calibration using default values
and a high weight for output stabilization in the loss function employing the
forecast results for all model specifications used in the empirical part (SD AR
forecast, bottom-up OLS-match, bottom-up U-MIDAS, direct ML). These re-
sults supplement numbers reported in Table E6 of the main paper which only
focuses on outcomes obtained for the SD AR forecast and Bottom-up U-MIDAS
models.
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Table 5: Variances of inflation and the output gap: Low weight on the
output gap (δ = 0.02

3
), all nowcast scenarios

Forecast scenario Week 1 Week 2 Week 3 Week 4

Variance of inflation

Medium economic uncertainty scenario

Baseline scenario (SD AR forecast) 5.76 4.71 4.71 4.71
Bottom-up OLS-match 4.94 4.29 4.28 4.27
Bottom-up U-MIDAS 4.99 4.31 4.28 4.28
Direct ML 5.08 4.32 4.34 4.27

High economic uncertainty scenario

Baseline scenario (SD AR forecast) 9.62 8.29 8.29 8.29
Bottom-up OLS-match 7.44 6.82 6.8 6.84
Bottom-up U-MIDAS 7.75 6.87 6.82 6.84
Direct ML 8.6 7.12 7.21 6.95

Low economic uncertainty scenario

Baseline scenario (SD AR forecast) 2.05 1.68 1.68 1.68
Bottom-up OLS-match 1.72 1.62 1.6 1.59
Bottom-up U-MIDAS 1.72 1.62 1.6 1.57
Direct ML 1.66 1.59 1.58 1.58

Variance of the output gap

Medium economic uncertainty scenario

Baseline scenario (SD AR forecast) 97.21 70.4 70.4 70.4
Bottom-up OLS-match 76.3 59.63 59.27 59.05
Bottom-up U-MIDAS 77.48 60.05 59.34 59.25
Direct ML 79.71 60.28 60.82 59.09

High economic uncertainty scenario

Baseline scenario (SD AR forecast) 162.98 128.8 128.8 128.8
Bottom-up OLS-match 107.17 91.04 90.65 91.73
Bottom-up U-MIDAS 114.95 92.58 91.28 91.69
Direct ML 136.9 98.75 101.2 94.53

Low economic uncertainty scenario

Baseline scenario (SD AR forecast) 33.91 24.46 24.46 24.46
Bottom-up OLS-match 25.61 22.86 22.33 22.09
Bottom-up U-MIDAS 25.66 22.88 22.33 21.74
Direct ML 23.99 22.32 21.98 22.03

Notes: Table 5 reports variances of the inflation rate and the output gap
obtained for the case of a low weight (δ = 0.02

3 ) on output stabilization when
nowcast error statistics from both the baseline model (SD-AR model) and all
scanner-data based nowcast models are used.
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Table 6: Variances of inflation and the output gap: High weight on the
output gap (δ = 0.25

3
), all nowcast scenarios

Forecast scenario Week 1 Week 2 Week 3 Week 4

Variance of inflation

Medium economic uncertainty scenario

Baseline scenario (SD AR forecast) 11.39 8.97 8.97 8.97
Bottom-up OLS-match 9.5 7.99 7.96 7.94
Bottom-up U-MIDAS 9.6 8.03 7.97 7.96
Direct ML 9.81 8.05 8.1 7.94

High economic uncertainty scenario

Baseline scenario (SD AR forecast) 19.16 16.07 16.07 16.07
Bottom-up OLS-match 14.12 12.67 12.63 12.73
Bottom-up U-MIDAS 14.82 12.8 12.69 12.72
Direct ML 16.81 13.36 13.58 12.98

Low economic uncertainty scenario

Baseline scenario (SD AR forecast) 3.9 3.04 3.04 3.04
Bottom-up OLS-match 3.15 2.9 2.85 2.83
Bottom-up U-MIDAS 3.15 2.9 2.85 2.8
Direct ML 3.0 2.85 2.82 2.83

Variance of the output gap

Medium economic uncertainty scenario

Baseline scenario (SD AR forecast) 1.11 0.71 0.71 0.71
Bottom-up OLS-match 0.8 0.55 0.55 0.54
Bottom-up U-MIDAS 0.82 0.56 0.55 0.54
Direct ML 0.85 0.56 0.57 0.54

High economic uncertainty scenario

Baseline scenario (SD AR forecast) 1.88 1.37 1.37 1.37
Bottom-up OLS-match 1.04 0.8 0.8 0.81
Bottom-up U-MIDAS 1.16 0.83 0.81 0.81
Direct ML 1.49 0.92 0.95 0.85

Low economic uncertainty scenario

Baseline scenario (SD AR forecast) 0.38 0.23 0.23 0.23
Bottom-up OLS-match 0.25 0.21 0.2 0.2
Bottom-up U-MIDAS 0.25 0.21 0.2 0.19
Direct ML 0.23 0.2 0.2 0.2

Notes: Table 6 reports variances of the inflation rate and the output gap
obtained for the case of a hight weight (δ = 0.25

3 ) on output stabilization when
nowcast error statistics from both the baseline model (SD-AR model) and all
scanner-data based nowcast models are used.
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